Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Microbiol ; 291: 110032, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430715

RESUMO

In recent years, it has become apparent that imbalances in the gastrointestinal system can impact organs beyond the intestine such as the lungs. Given the established ability of probiotics to modulate the immune system by interacting with gastrointestinal cells, our research aimed to investigate whether administering the probiotic strain Bacillus subtilis-597 could mitigate the outcome of influenza virus infection in pigs. Pigs were fed a diet either with or without the probiotic strain B. subtilis-597 for 14 days before being intranasally inoculated with a swine influenza A H1N2 strain (1 C.2 lineage). Throughout the study, we collected fecal samples, blood samples, and nasal swabs to examine viral shedding and immune gene expression. After seven days of infection, the pigs were euthanized, and lung and ileum tissues were collected for gene expression analysis and pathological examination. Our findings indicate that the administration of B. subtilis-597 exhibit potential in reducing lung lesions, possibly attributable to a general suppression of the immune system as indicated by reduced C-reactive protein (CRP) levels in serum, decreased expression of interferon-stimulated genes (ISGs), and localized reduction of the inflammatory marker serum amyloid A (SAA) in ileum tissue. Notably, the immune-modulatory effects of B. subtilis-597 appeared to be unrelated to the gastrointestinal microbiota, as the composition remained unaltered by both the influenza infection and the administration of B. subtilis-597.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Probióticos , Doenças dos Suínos , Suínos , Animais , Humanos , Bacillus subtilis , Probióticos/farmacologia , Infecções por Orthomyxoviridae/veterinária , Inflamação/veterinária , Pulmão/patologia
2.
Nat Commun ; 14(1): 8526, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135681

RESUMO

Despite their crucial importance for human health, there is still relatively limited knowledge on how the gut resistome changes or responds to antibiotic treatment across ages, especially in the latter case. Here, we use fecal metagenomic data from 662 Danish infants and 217 young adults to fill this gap. The gut resistomes are characterized by a bimodal distribution driven by E. coli composition. The typical profile of the gut resistome differs significantly between adults and infants, with the latter distinguished by higher gene and plasmid abundances. However, the predominant antibiotic resistance genes (ARGs) are the same. Antibiotic treatment reduces bacterial diversity and increased ARG and plasmid abundances in both cohorts, especially core ARGs. The effects of antibiotic treatments on the gut microbiome last longer in adults than in infants, and different antibiotics are associated with distinct impacts. Overall, this study broadens our current understanding of gut resistome dynamics and the impact of antibiotic treatment across age groups.


Assuntos
Antibacterianos , Microbioma Gastrointestinal , Lactente , Adulto Jovem , Humanos , Antibacterianos/farmacologia , Microbioma Gastrointestinal/genética , Escherichia coli/genética , Bactérias/genética , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos
3.
New Phytol ; 240(5): 2020-2034, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700504

RESUMO

Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.


Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Agricultura , Gases , Biota , Nutrientes , Óxido Nitroso , Fertilizantes
4.
Environ Microbiol ; 25(12): 3035-3051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655671

RESUMO

Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.


Assuntos
Poluentes Ambientais , Integrons , Antibacterianos/farmacologia , Bactérias/genética , Elementos de DNA Transponíveis/genética , Resistência a Múltiplos Medicamentos , Integrons/genética , Plasmídeos/genética , Indústria Farmacêutica
5.
Front Microbiol ; 14: 1169958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520365

RESUMO

Introduction: Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. Methods: We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. Results and Discussion: Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future.

6.
Bioinform Adv ; 3(1): vbad060, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213867

RESUMO

Motivation: Metagenomic binning facilitates the reconstruction of genomes and identification of Metagenomic Species Pan-genomes or Metagenomic Assembled Genomes. We propose a method for identifying a set of de novo representative genes, termed signature genes, which can be used to measure the relative abundance and used as markers of each metagenomic species with high accuracy. Results: An initial set of the 100 genes that correlate with the median gene abundance profile of the entity is selected. A variant of the coupon collector's problem was utilized to evaluate the probability of identifying a certain number of unique genes in a sample. This allows us to reject the abundance measurements of strains exhibiting a significantly skewed gene representation. A rank-based negative binomial model is employed to assess the performance of different gene sets across a large set of samples, facilitating identification of an optimal signature gene set for the entity. When benchmarked the method on a synthetic gene catalog, our optimized signature gene sets estimate relative abundance significantly closer to the true relative abundance compared to the starting gene sets extracted from the metagenomic species. The method was able to replicate results from a study with real data and identify around three times as many metagenomic entities. Availability and implementation: The code used for the analysis is available on GitHub: https://github.com/trinezac/SG_optimization. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

7.
Nat Microbiol ; 8(5): 986-998, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37037943

RESUMO

The gut microbiome is shaped through infancy and impacts the maturation of the immune system, thus protecting against chronic disease later in life. Phages, or viruses that infect bacteria, modulate bacterial growth by lysis and lysogeny, with the latter being especially prominent in the infant gut. Viral metagenomes (viromes) are difficult to analyse because they span uncharted viral diversity, lacking marker genes and standardized detection methods. Here we systematically resolved the viral diversity in faecal viromes from 647 1-year-olds belonging to Copenhagen Prospective Studies on Asthma in Childhood 2010, an unselected Danish cohort of healthy mother-child pairs. By assembly and curation we uncovered 10,000 viral species from 248 virus family-level clades (VFCs). Most (232 VFCs) were previously unknown, belonging to the Caudoviricetes viral class. Hosts were determined for 79% of phage using clustered regularly interspaced short palindromic repeat spacers within bacterial metagenomes from the same children. Typical Bacteroides-infecting crAssphages were outnumbered by undescribed phage families infecting Clostridiales and Bifidobacterium. Phage lifestyles were conserved at the viral family level, with 33 virulent and 118 temperate phage families. Virulent phages were more abundant, while temperate ones were more prevalent and diverse. Together, the viral families found in this study expand existing phage taxonomy and provide a resource aiding future infant gut virome research.


Assuntos
Bacteriófagos , Microbioma Gastrointestinal , Lactente , Humanos , Estudos Prospectivos , Bacteriófagos/genética , Lisogenia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Bactérias/genética
8.
NPJ Biofilms Microbiomes ; 8(1): 48, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680942

RESUMO

The development of necrotizing enterocolitis (NEC), a life-threatening inflammatory bowel disease affecting preterm infants, is connected with gut microbiota dysbiosis. Using preterm piglets as a model for preterm infants we recently showed that fecal microbiota transplantation (FMT) from healthy suckling piglet donors to newborn preterm piglets decreased the NEC risk. However, in a follow-up study using donor stool from piglets recruited from another farm, this finding could not be replicated. This allowed us to study donor-recipient microbiota dynamics in a controlled model system with a clear difference in NEC phenotype. Preterm piglets (n = 38) were randomly allocated to receive control saline (CON), or rectal FMT using either the ineffective (FMT1) or the effective donor stool (FMT2). All animals were followed for four days before necropsy and gut pathological evaluation. Donor and recipient colonic gut microbiota (GM) were analyzed by 16 S rRNA gene amplicon sequencing and shotgun metagenomics. As expected, only FMT2 recipients were protected against NEC. Both FMT groups had shifted GM composition relative to CON, but FMT2 recipients had a higher lactobacilli relative abundance compared to FMT1. Limosilactobacillus reuteri and Lactobacillus crispatus strains of FMT recipients showed high phylogenetic similarity with their respective donors, indicating engraftment. Moreover, the FMT2 group had a higher lactobacilli replication rate and harbored specific glycosaminoglycan-degrading Bacteroides. In conclusion, subtle species-level donor differences translate to major changes in engraftment dynamics and the ability to prevent NEC. This could have implications for proper donor selection in future FMT trials for NEC prevention.


Assuntos
Enterocolite Necrosante , Transplante de Microbiota Fecal , Animais , Enterocolite Necrosante/prevenção & controle , Enterocolite Necrosante/veterinária , Seguimentos , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Filogenia , Suínos
9.
Clin Microbiol Infect ; 28(4): 588-595, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34500080

RESUMO

OBJECTIVES: To investigate changes in vaginal microbiota during pregnancy, and the association between vaginal dysbiosis and reproductive outcomes. METHODS: A total of 730 (week 24) and 666 (week 36) vaginal samples from 738 unselected pregnant women were studied by microscopy (Nugent score) and characterized by 16S rRNA gene sequencing. A novel continuous vaginal dysbiosis score was developed based on these methods using a supervised partial least squares model. RESULTS: Among women with bacterial vaginosis in week 24 (n = 53), 47% (n = 25) also had bacterial vaginosis in week 36. In contrast, among women without bacterial vaginosis in week 24, only 3% (n = 18) developed bacterial vaginosis in week 36. Vaginal samples dominated by Lactobacillus crispatus (OR 0.35, 95% CI 0.20-0.60) and Lactobacillus iners (OR 0.40, 95% CI 0.23-0.68) in week 24 were significantly more stable by week 36 when compared with other vaginal community state types. Vaginal dysbiosis score at week 24 was associated with a significant increased risk of emergency, but not elective, caesarean section (OR 1.37, 955 CI 1.15-1.64, p < 0.001), suggesting a 37% increased risk per standard deviation increase in vaginal dysbiosis score. CONCLUSIONS: Changes in vaginal microbiota from week 24 to week 36 of pregnancy correlated with bacterial vaginosis status and vaginal community state type. A novel vaginal dysbiosis score was associated with a significantly increased risk of emergency, but not elective, caesarean section. This was not found for bacterial vaginosis or any vaginal community state type and could point to the importance of investigating vaginal dysbiosis as a nuanced continuum instead of crude clusters.


Assuntos
Cesárea , Disbiose , Cesárea/efeitos adversos , Feminino , Humanos , Gravidez , Estudos Prospectivos , RNA Ribossômico 16S/genética , Vagina/microbiologia
10.
Environ Int ; 158: 106899, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34598063

RESUMO

Antibiotic-resistant pathogens constitute an escalating public health concern. Hence a better understanding of the underlying processes responsible for this expansion is urgently needed. Co-selection of heavy metal/biocide and antibiotic resistance genes (ARGs) has been suggested as one potential mechanism promoting the proliferation of antimicrobial resistance (AMR). This paper aims to elucidate this interplay and exploit differences in antibiotic usage to infer patterns of co-selection by the non-antibiotic factors metals and biocides in the context of pig farming. We examined 278 gut metagenomes from pigs with continuous antibiotic exposure, only at weaning and at no exposure. Metals as growth promoters and biocides as disinfectants are currently used with little restrictions in stock farming. The pigs under continuous antibiotic exposure displayed the highest co-occurrence of ARGs and other genetic elements while the pigs under limited use of antibiotics still showed abundant co-occurrences. Pathogens belonging to Enterobacteriaceae displayed increased co-occurrence phenomena, suggesting that this maintenance is not a random selection process from a mobilized pool but pertains to specific phylogenetic clades. These results suggest that metals and biocides displayed strong selective pressures on ARGs exerted by intensive farming, regardless of the current use of antibiotics.


Assuntos
Desinfetantes , Metais Pesados , Animais , Antibacterianos/farmacologia , Genes Bacterianos , Metagenoma , Metais Pesados/toxicidade , Filogenia , Suínos
11.
Microorganisms ; 9(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065975

RESUMO

The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.

12.
Cell Host Microbe ; 29(6): 975-987.e4, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33887206

RESUMO

Antimicrobial resistance (AMR) is an accelerating global threat, yet the nature of AMR in the gut microbiome and how AMR is acquired during early life remain largely unknown. In a cohort of 662 Danish children, we characterized the antibiotic resistance genes (ARGs) acquired during the first year of life and assessed the impacts of diverse environmental exposures on ARG load. Our study reveals a clear bimodal distribution of ARG richness that is driven by the composition of the gut microbiome, especially E. coli. ARG profiles were significantly affected by various environmental factors. Among these factors, the importance of antibiotics diminished with time since treatment. Finally, ARG load and ARG clusters were also associated with the maturity of the gut microbiome and a bacterial composition associated with increased risk of asthma. These findings broaden our understanding of AMR in early life and have critical implications for efforts to mitigate its spread.


Assuntos
Antibacterianos/farmacologia , Asma/microbiologia , Resistência Microbiana a Medicamentos/genética , Exposição Ambiental/estatística & dados numéricos , Escherichia coli/genética , Microbioma Gastrointestinal/efeitos dos fármacos , Criança , Pré-Escolar , Estudos de Coortes , DNA Bacteriano , Escherichia coli/efeitos dos fármacos , Fezes/microbiologia , Feminino , Genes Bacterianos , Humanos , Lactente , Recém-Nascido , Masculino , Metagenômica , Gravidez , Proteobactérias/efeitos dos fármacos , Medição de Risco
13.
Microorganisms ; 9(2)2021 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-33670245

RESUMO

This study aimed to investigate the effects of different levels of soil- and plant-associated bacterial diversity on the rates of litter decomposition, and bacterial community dynamics during its early phases. We performed an incubation experiment where soil bacterial diversity (but not abundance) was manipulated by autoclaving and reinoculation. Natural or autoclaved maize leaves were applied to the soils and incubated for 6 weeks. Bacterial diversity was assessed before and during litter decomposition using 16S rRNA gene metabarcoding. We found a positive correlation between litter decomposition rates and soil bacterial diversity. The soil with the highest bacterial diversity was dominated by oligotrophic bacteria including Acidobacteria, Nitrospiraceae, and Gaiellaceae, and its community composition did not change during the incubation. In the less diverse soils, those taxa were absent but were replaced by copiotrophic bacteria, such as Caulobacteraceae and Beijerinckiaceae, until the end of the incubation period. SourceTracker analysis revealed that litter-associated bacteria, such as Beijerinckiaceae, only became part of the bacterial communities in the less diverse soils. This suggests a pivotal role of oligotrophic bacteria during the early phases of litter decomposition and the predominance of copiotrophic bacteria at low diversity.

14.
Microb Ecol ; 81(4): 897-907, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33161521

RESUMO

Nutrient turnover in soils is strongly driven by soil properties, including clay mineral composition. One main nutrient is phosphorus (P), which is known to be easily immobilized in soil. Therefore, the specific surface characteristics of clay minerals might substantially influence P availability in soil and thus the microbial strategies for accessing P pools. We used a metagenomic approach to analyze the microbial potential to access P after 842 days of incubation in artificial soils with a clay mineral composition of either non-expandable illite (IL) or expandable montmorillonite (MT), which differ in their surface characteristics like soil surface area and surface charge. Our data indicate that microorganisms of the two soils developed different strategies to overcome P depletion, resulting in similar total P concentrations. Genes predicted to encode inorganic pyrophosphatase (ppa), exopolyphosphatase (ppx), and the pstSCAB transport system were higher in MT, suggesting effective P uptake and the use of internal poly-P stores. Genes predicted to encode enzymes involved in organic P turnover like alkaline phosphatases (phoA, phoD) and glycerophosphoryl diester phosphodiesterase were detected in both soils in comparable numbers. In addition, Po concentrations did not differ significantly. Most identified genes were assigned to microbial lineages generally abundant in agricultural fields, but some were assigned to lineages known to include oligotrophic specialists, such as Bacillaceae and Microchaetaceae.


Assuntos
Microbiologia do Solo , Solo , Bactérias/genética , Argila , Minerais
15.
J Allergy Clin Immunol ; 148(1): 234-243, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33338536

RESUMO

BACKGROUND: Urbanization is linked with an increased burden of asthma and atopic traits. A putative mechanism is insufficient exposure to beneficial microbes early in life, leading to immune dysregulation, as was previously shown for indoor microbial exposures. OBJECTIVE: Our aim was to investigate whether urbanization is associated with the microbiota composition in the infants' body and early immune function, and whether these contribute to the later risk of asthma and atopic traits. METHODS: We studied the prospective Copenhagen Prospective Studies on Asthma in Childhood 20102010 mother-child cohort of 700 children growing up in areas with different degrees of urbanization. During their first year of life, airway and gut microbiotas, as well as immune marker concentrations, were defined. When the children were 6 years of age, asthma and atopic traits were diagnosed by pediatricians. RESULTS: In adjusted analyses, the risk of asthma and aeroallergen sensitization were increased in urban infants. The composition of especially airway but also gut microbiotas differed between urban and rural infants. The living environment-related structure of the airway microbiota was already associated with immune mediator concentrations at 1 month of age. An urbanized structure of the airway and gut microbiotas was associated with an increased risk of asthma coherently during multiple time points and also with the risks of eczema and sensitization. CONCLUSION: Our findings suggest that urbanization-related changes in the infant microbiota may elevate the risk of asthma and atopic traits, probably via cross talk with the developing immune system. The airways may facilitate this effect, as they are open for colonization by environmental airborne microbes and serve as an immune interface.


Assuntos
Dermatite Atópica/imunologia , Microbiota/imunologia , Alérgenos/imunologia , Asma/imunologia , Criança , Estudos de Coortes , Eczema/imunologia , Microbioma Gastrointestinal/imunologia , Humanos , Lactente , Recém-Nascido , Estudos Prospectivos , População Rural , Urbanização
16.
Front Microbiol ; 11: 556793, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133031

RESUMO

Sulfate-reducing microorganisms (SRMs) often compete with methanogens for common substrates. Due to thermodynamic reasons, SRMs should outcompete methanogens in the presence of sulfate. However, many studies have documented coexistence of these microbial groups in natural environments, suggesting that thermodynamics alone cannot explain the interactions among them. In this study, we investigated how SRMs compete with the established methanogenic communities in sediment from a long-term, electron acceptor-depleted, asphalt-exposed ecosystem and how they affect the composition of the organic material. We hypothesized that, upon addition of sulfate, SRMs (i) outcompete the methanogenic communities and (ii) markedly contribute to transformations of the organic material. We sampled sediments from the test and proximate control sites under anoxic conditions and incubated them in seawater medium with or without sulfate. Abundance and activity pattern of SRMs and methanogens, as well as the total prokaryotic community, were followed for 6 weeks by using qPCR targeting selected marker genes. Some of these genes were also subjected to amplicon sequencing to assess potential shifts in diversity patterns. Alterations of the organic material in the microcosms were determined by mass spectrometry. Our results indicate that the competition of SRMs with methanogens upon sulfate addition strongly depends on the environment studied and the starting microbiome composition. In the asphalt-free sediments (control), the availability of easily degradable organic material (mainly plant-derived) allows SRMs to use a larger variety of substrates, reducing interspecies competition with methanogens. In contrast, the abundant presence of recalcitrant compounds in the asphalt-exposed sediment was associated with a strong competition between SRMs and methanogens, ultimately detrimental for the latter. Our data underpin the importance of the quality of bioavailable organic materials in anoxic environments as a driver for microbial community structure and function.

17.
Sci Transl Med ; 12(569)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177184

RESUMO

There have been reports of associations between cesarean section delivery and the risk of childhood asthma, potentially mediated through changes in the gut microbiota. We followed 700 children in the Copenhagen Prospective Studies on Asthma in Childhood2010 (COPSAC2010) cohort prospectively from birth. We examined the effects of cesarean section delivery on gut microbial composition by 16S rRNA gene amplicon sequencing during the first year of life. We then explored whether gut microbial perturbations due to delivery mode were associated with a risk of developing asthma in the first 6 years of life. Delivery by cesarean section was accompanied by marked changes in gut microbiota composition at one week and one month of age, but by one year of age only minor differences persisted compared to vaginal delivery. Increased asthma risk was found in children born by cesarean section only if their gut microbiota composition at 1 year of age still retained a cesarean section microbial signature, suggesting that appropriate maturation of the gut microbiota could mitigate against the increased asthma risk associated with gut microbial changes due to cesarean section delivery.


Assuntos
Asma , Microbioma Gastrointestinal , Cesárea , Criança , Feminino , Humanos , Gravidez , Estudos Prospectivos , RNA Ribossômico 16S/genética
18.
Microorganisms ; 8(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937884

RESUMO

Mechanisms used by plants to respond to water limitation have been extensively studied. However, even though the inoculation of beneficial microbes has been shown to improve plant performance under drought stress, the inherent role of soil microbes on plant response has been less considered. In the present work, we assessed the importance of the soil microbiome for the growth of barley plants under drought stress. Plant growth was not significantly affected by the disturbance of the soil microbiome under regular watering. However, after drought stress, we observed a significant reduction in plant biomass, particularly of the root system. Plants grown in the soil with disturbed microbiome were significantly more affected by drought and did not recover two weeks after re-watering. These effects were accompanied by changes in the composition of endophytic fungal and bacterial communities. Under natural conditions, soil-derived plant endophytes were major colonizers of plant roots, such as Glycomyces and Fusarium, whereas, for plants grown in the soil with disturbed microbiome seed-born bacterial endophytes, e.g., Pantoea, Erwinia, and unclassified Pseudomonaceae and fungal genera normally associated with pathogenesis, such as Gibberella and Gaeumannomyces were observed. Therefore, the role of the composition of the indigenous soil microbiota should be considered in future approaches to develop management strategies to make plants more resistant towards abiotic stress, such as drought.

19.
Front Microbiol ; 11: 568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318044

RESUMO

Agro-ecosystems experience huge losses of land every year due to soil erosion induced by poor agricultural practices such as intensive tillage. Erosion can be minimized by the presence of stable soil aggregates, the formation of which can be promoted by bacteria. Some of these microorganisms have the ability to produce exopolysaccharides and lipopolysaccharides that "glue" soil particles together. However, little is known about the influence of tillage intensity on the bacterial potential to produce these polysaccharides, even though more stable soil aggregates are usually observed under less intense tillage. As the effects of tillage intensity on soil aggregate stability may vary between sites, we hypothesized that the response of polysaccharide-producing bacteria to tillage intensity is also determined by site-specific conditions. To investigate this, we performed a high-throughput shotgun sequencing of DNA extracted from conventionally and reduced tilled soils from three tillage system field trials characterized by different soil parameters. While we confirmed that the impact of tillage intensity on soil aggregates is site-specific, we could connect improved aggregate stability with increased absolute abundance of genes involved in the production of exopolysaccharides and lipopolysaccharides. The potential to produce polysaccharides was generally promoted under reduced tillage due to the increased microbial biomass. We also found that the response of most potential producers of polysaccharides to tillage was site-specific, e.g., Oxalobacteraceae had higher potential to produce polysaccharides under reduced tillage at one site, and showed the opposite response at another site. However, the response of some potential producers of polysaccharides to tillage did not depend on site characteristics, but rather on their taxonomic affiliation, i.e., all members of Actinobacteria that responded to tillage intensity had higher potential for exopolysaccharide and lipopolysaccharide production specifically under reduced tillage. This could be especially crucial for aggregate stability, as polysaccharides produced by different taxa have different "gluing" efficiency. Overall, our data indicate that tillage intensity could affect aggregate stability by both influencing the absolute abundance of genes involved in the production of exopolysaccharides and lipopolysaccharides, as well as by inducing shifts in the community of potential polysaccharide producers. The effects of tillage intensity depend mostly on site-specific conditions.

20.
Nat Commun ; 11(1): 426, 2020 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969566

RESUMO

Maternal dietary interventions during pregnancy with fish oil and high dose vitamin D have been shown to reduce the incidence of asthma and wheeze in offspring, potentially through microbial effects in pregnancy or early childhood. Here we analyze the bacterial compositions in longitudinal samples from 695 pregnant women and their children according to intervention group in a nested, factorial, double-blind, placebo-controlled, randomized trial of n-3 long-chain fatty acids and vitamin D supplementation. The dietary interventions affect the infant airways, but not the infant fecal or maternal vaginal microbiota. Changes in overall beta diversity are observed, which in turn associates with a change in immune mediator profile. In addition, airway microbial maturation and the relative abundance of specific bacterial genera are altered. Furthermore, mediation analysis reveals the changed airway microbiota to be a minor and non-significant mediator of the protective effect of the dietary interventions on risk of asthma. Our results demonstrate the potential of prenatal dietary supplements as manipulators of the early airway bacterial colonization.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Microbiota/efeitos dos fármacos , Fenômenos Fisiológicos da Nutrição Pré-Natal , Sistema Respiratório/microbiologia , Vitamina D/administração & dosagem , Adulto , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Estudos de Coortes , Suplementos Nutricionais/análise , Método Duplo-Cego , Feminino , Humanos , Lactente , Recém-Nascido , Estudos Longitudinais , Masculino , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...